Binder
直观来说,Binder是Android中的一个类,它实现了IBinder接口。从IPC角度来说,Binder是Android中的一种跨进程通信方式,Binder还可以理解为一种虚拟的物理设备,它的设备驱动是/dev/binder,该通信方式在Linux中没有;从Android Framework角度来说,Binder是ServiceManager连接各种Manager(ActivityManager、WindowManager,等等)和相应ManagerService的桥梁;从Android应用层来说,Binder是客户端和服务端进行通信的媒介,当bindService的时候,服务端会返回一个包含了服务端业务调用的Binder对象,通过这个Binder对象,客户端就可以获取服务端提供的服务或者数据,这里的服务包括普通服务和基于AIDL的服务。
Android开发中,Binder主要用在Service中,包括AIDL和Messenger,其中普通Service中的Binder不涉及进程间通信,所以较为简单,无法触及Binder的核心,而Messenger的底层其实是AIDL,所以这里选择用AIDL来分析Binder的工作机制。为了分析Binder的工作机制,我们需要新建一个AIDL示例,SDK会自动为我们生产AIDL所对应的Binder类,然后我们就可以分析Binder的工作过程。新建Java包AIDL,然后新建三个文件Book.java、Book.aidl和IBookManager.aidl,代码如下所示:
Book.java
1 | package com.example.wy521angel.bindertest; |
Book.aidl
1 | // Book.aidl |
IBookManager.aidl
1 | // IBookManager.aidl |
上面三个文件中,Book.java是一个表示图书信息的类,它实现了Parcelable接口。Book.aidl是Book类在AIDL中的声明。IBookManager.aidl是我们定义的一个接口,里面有两个方法,getBookList和addBook,其中getBookList是从服务器中获取图书列表,而addBook用于往图书列表中添加一本书。我们可以看到,addBook方法的参数是Book,,参数前面有一个修饰符:in,且这个修饰符是必须的,否则会报错。事实上这样的修饰符有in、out、inout,它们含义如下:
- in:参数由客户端设置,或者理解成客户端传入参数值。
- out:参数由服务端设置,或者理解成由服务端返回值。
- inout:客户端服务端都可以设置,或者理解成可以双向通信。
尽管Book类已经和IBookManager位于相同的包中,但是在IBookManager中仍然要导入Book类,这就是AIDL的特殊之处。下面我们看一下系统为IBookManager.aidl生产的Binder类。在Android Studio 的app->build->generated->source->aidl->debug->包名下,有一个IBookManager.java的类,这就是我们要找的类,我们通过这个生成Binder来分析Binder的工作原理,代码如下:
1 | /* |
可以看到根据IBookManager.aidl系统为我们生成了上述代码这个java类,它继承了IIntenrface接口,同时它自己也还是一个接口,所有可以在Binder中传输的接口都需要继承IIntenrface接口。通过这个类,我们可以清楚地了解到Binder的工作机制。这个类的结构其实很简单,首先,它声明了两个方法getBookList和addBook,显然这就是我们在IBookManager.aidl中所声明的方法,同时它还声明了两个整型的id分别用于标识这两个方法,这两个id用于标识在transact过程中客户端所请求的到底是哪个方法。接着,它声明了一个内部类Stub,这个Stub就是一个Binder类,当客户端和服务端都位于同一个进程时,方法调用不会走跨进程的transact过程,而当两者位于不同进程时,方法调用需要走transact过程,这个逻辑由Stub的内部代理类Proxy来完成。这么来看,这个接口的核心实现就是它的内部类Stub和Stub的内部代理类Proxy,下面详细介绍针对这两个类的每个方法的含义。
DESCRIPTOR
Binder的唯一标识,一般用当前Binder的类名表示,比如本例子中的“com.example.wy521angel.aidl.IBookManager”
asInterface(android.os.IBinder obj)
用于将服务端的Binder对象转换成客户端所需的AIDL接口类型的对象,这种转换过程是区分进程的,如果客户端和服务端位于同一进程,那么此方法返回的就是服务端的Stub对象本身,否则返回的是系统封装后的Stub.proxy对象。
asBinder
此方法用于返回当前Binder对象。
onTransact
这个方法运行在服务端中的Binder线程池中,当客户端发起跨进程请求时,远程请求会通过系统底层封装后交由此方法来处理。该方法的原型为public Boolean onTransact (int code,android.os.Parcel data,android.os.Parcel reply,int flags)。服务端通过code可以确定客户端所请求的目标方法是什么,接着从data中取出目标方法所需要的参数(如果目标方法有参数的话),然后执行目标方法。当目标方法执行完毕后,就向reply中写入返回值(如果目标方法有返回值的话),onTransact方法的执行过程就是这样的。需要注意的是,如果此方法返回false,那么客户端的请求会失败,因此我们可以利用这个特性来做权限验证,毕竟我们也不希望随便一个进程都能远程调用我们的服务。
Proxy#getBookList
这个方法运行在客户端,当客户端远程调用此方法时,它的内部实现是这样的:首先创建该方法所需要的输入型Parcel对象_data、输出型Parcel对象_reply和返回值对象List;然后把该方法的参数信息写入_data中(如果有参数的话);接着调用transact方法来发起RPC(远程过程调用)请求,同时当前线程挂起;然后服务端的onTransact方法会被调用,直到RPC过程返回后,当前线程继续执行,并从_reply中取出RPC过程的返回结果;最后返回_reply中的数据。
Proxy#addBook
这个方法运行在客户端,它的执行过程和getBookList是一样的,addBook没有返回值,所以它不需要从_reply中取出返回值。
有两点还是需要额外说明一下:首先,当客户端发起远程请求时,由于当前线程会被挂起直至服务端进程返回数据,所以如果一个远程方法是很耗时的,那么不能在UI线程中发起此远程请求;其次,由于服务端的Binder方法运行在Binder的线程池中,所以Binder方法不管是否耗时都应该采用同步的方式去实现,因为它已经运行在一个线程中了。为了更好地说明Binder,下面给出一个Binder的工作机制图:
从上述分析过程来看,我们完全可以不提供AIDL文件即可实现Binder,之所以提供AIDL文件,是为了方便系统为我们生成代码。系统根据AIDL文件生成Java文件的格式是固定的,我们可以抛开AIDL文件直接写一个Binder出来,接下来我们就介绍如何手动写一个Binder。还是上面的例子,但是这次我们不提供AIDL文件。参考上面系统自动生成的IBookManager.java这个类的代码,可以发现这个类是有规律的,根据它的特点,我们完全可以自己写一个和它一模一样的类出来,然后这个不借助AIDL文件的Binder就完成了。可以发现这个类主要由两部分组成,首先它本身是一个Binder的接口(继承了IInterface),其次它的内部有个Stub类,这个类就是个Binder。我们写一个Binder的服务端,代码如下:
1 | private final IBookManager.Stub mBinder = new IBookManager.Stub(){ |
首先我们会实现一个创建了Stub对象并在内部实现IBookManager的接口方法,然后在Service的onBind中返回这个Stub对象。因此,从这一点来看,我们完全可以把Stub类提取出来直接作为一个独立的Binder类来实现,这样IBookManager中就只剩接口本身了,通过这种分离的方式可以让它的结构变得清晰点。
根据上面的思想,手动实现一个Binder可以通过如下步骤来完成:
- 声明一个AIDL性质的接口,只需要继承IInterface接口即可,IInterface接口中只有一个asBinder方法。这个接口的实现如下:
1 | public interface IBookManager extends IInterface { |
可以看到,在接口中声明了一个Binder描述符和另外两个id,这两个id分别表示的是getBookList和addBook方法,这段代码原本也是系统生成的,我们仿照系统生成的规则去手动书写这部分代码。如果我们有三个方法,应该怎么做呢?很显然,我们要再声明一个id,然后按照固定模式声明这个新方法即可。
- 实现Stub类和Stub类中的Proxy代理类,这段代码我们可以自己写,但是写出来后会发现和系统自动生成的代码是一样的,因此这个Stub类我们只需要参考系统生成的代码即可,只是结构上需要做一下调整,调整后的代码如下所示:
1 | public class BookManagerImpl extends Binder implements IBookManager { |
通过将上述代码和系统生成的代码对比,可以发现简直是一模一样的。我们在实际开发中完全可以通过AIDL文件让系统去自动生成,手动去写的意义在于可以让我们更加理解Binder的工作原理,同时也提供了一种不通过AIDL文件来实现Binder的新方式。也就是说,AIDL文件并不是实现Binder的必需品。如果是我们手写的Binder,那么在服务端只需要创建一个BookManagerImpl的对象并在Service的onBind方法中返回即可。最后,是否手动实现Binder没有本质区别,二者的工作原理完全一样,AIDL文件的本质是系统为我们提供了一种快速实现Binder的工具,仅此而已。
接下来,我们介绍Binder的两个很重要的方法linkToDeath和unlinkToDeath。我们知道,Binder运行在服务端进程,如果服务端进程由于某种原因异常终止,这个时候我们到服务端的Binder连接断裂(称之为Binder死亡),会导致我们的远程调用失败。更为关键的是,如果我们不知道Binder连接已经断裂,那么客户端的功能就会受到影响。为了解决这个问题,Binder中提供了两个配对的方法linkToDeath和unlinkToDeath,通过 linkToDeath我们可以给Binder设置一个死亡代理,当Binder死亡时,我们就会收到通知,这个时候我们就可以重新发起连接请求从而恢复连接。那么到底如何给Binder设置死亡代理?
首先,声明一个DeathRecipient对象。DeathRecipient是一个接口,其内部只有一个方法binderDied,我们需要实现这个方法,当Binder死亡的时候,系统就会回调binderDied方法,然后我们就可以移出之前绑定的binder代理并重新绑定远程服务:
1 | private IBinder.DeathRecipient mDeathRecipient = new IBinder.DeathRecipient() { |
其次,在客户端绑定远程服务成功之后,给binder设置死亡代理;
1 | mService= IMessageBoxManager.Stub.asInterface(binder); |
其次linkToDeath的第二个参数是个标记位,我们直接设置为0即可。经过上面两个步骤,给Binder设置了死亡代理,当Binder死亡之后我们就可以收到通知了。另外,通过Binder的方法isBinderAlive也可以判断Binder是否死亡。
参考资料:
《Android 开发艺术探索》任玉刚 第2章 2.3.3 Binder
废墟的树 Android进程间通信之—-Aidl传递对象